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This paper is devoted to a discussion of possible strategies to prove rigorously
the existence of a metal-insulator Anderson transition for the Anderson model
in dimension d \ 3. The possible criterions used to define such a transition are
presented. It is argued that at low disorder the lowest order in perturbation
theory is described by a random matrix model. Various simplified versions for
which rigorous results have been obtained in the past are discussed. It includes a
free probability approach, the Wegner n-orbital model and a class of models
proposed by Disertori, Pinson, and Spencer, Comm. Math. Phys. 232:83–124
(2002). At last a recent work by Magnen, Rivasseau, and the author, Markov
Process and Related Fields 9:261–278 (2003) is summarized: it gives a toy model
describing the lowest order approximation of Anderson model and it is proved
that, for d=2, its density of states is given by the semicircle distribution. A
short discussion of its extension to d \ 3 follows.
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1. THE ANDERSON MODEL

This short review is based upon a recent paper in collaboration with
J. Magnen and V. Rivasseau (15) proposing a Random Matrix Model as a
zeroth order approximation for the Anderson model at small coupling. It
was motivated by a previous work by Spencer et al. (19) with a similar aim
after the thesis work of Poirot. (36, 37, 42) Part of the present analysis can be
found in a recent review paper. (13) Random Matrix Theory (RMT) has
been used with success in many problems of Physics and Mathematics,
either as a substitute for the ab initio model or as a guideline for statistical
properties. However, there is no example so far of such problems in which
it has been showed that there is a random matrix approximation justifying
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Fig. 1. The phase diagram of the 3D Anderson model. (33)

the use of RMT. This review intends to show that such a gap may be filled
in the Anderson model, thanks to the thesis work of G. Poirot. (42)

The Anderson model is given by the following random Hamiltonian
acting on a2(Zd)

Hwk(x)= C
y; |y−x|=1

k(y)+V(x) k(x) k ¥ a2(Zd) (1)

where w=(V(x))x ¥ Z
d is a family of independent identically distributed

random variables such that

OV(x)P=0 OV(x)2P=W2. (2)

The Anderson conjecture, resulting from previous analysis by Anderson
and his collaborators, (1, 2) asserts that in dimension d=1, 2 all states are
localized for W> 0, while for d \ 3 there is a metal-insulator transition at
low disorder in the band center. By localized it is meant here that (i) the
spectrum of Hw is pure-point with probability one and (ii) the localization
length is finite.3 By metallic behavior it is meant that (i) the spectrum is

3Mathematical physicists are usually considering only the condition (i) whereas physicist
consider usually (ii) only as a definition of localization.

absolutely continuous and simple (49) with probability one, (ii) the diffusion
exponent is 1/2 and (iii) the zero temperature conductivity is nonzero and
finite.

The phase diagram in Fig. 1 shows the mobility edge in the energy-
disorder coordinates (E, W) for the Anderson model with d=3 for three
types of on-site distribution for the V(x)’s, the uniform, the Gaussian and
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the Lorentzian distributions. This is the result of years of numerical cal-
culations performed in the eighties. (33) It is interesting to note the existence
of a re-entrance phenomenon for the uniform and the Gaussian distribu-
tions, namely starting from a low disorder and a fixed energy close to but
outside the free spectrum, as W increases, the localized phase is first met
then a transition to the extended phase and then again the localized phase.

Historically the previous evidences have been obtained in many ways.
Analytic non rigorous works go back to the seminal papers by Anderson
et al. (1, 2) In 1979, Wegner proposed the n-orbital model as a good intuitive
model. (51) Namely the wave function k in Eq. (1) takes on values k(x) ¥ Cn

instead, while V(x) is chosen to be an n×n random matrix of the Gaussian
Orthogonal Ensemble (GOE). (38) He also discussed the existence of a
massless Goldstone mode (45) as a sign for delocalization. (45) Numerical
works went to supplement these ideas (see ref. 33 and references therein).
Rigorous works appeared in the late seventies (25, 34) proving that the spec-
trum of the one-dimensional Anderson model was almost surely pure-point
with exponentially localized eigenstates. In the early eighties these results
were extended to higher dimension at large disorder by many contributors
starting with the work of Fröhlich and Spencer (22) (see ref. 41 for a list of
references). Conceptual improvements were given by Aizenman and
Molchanov (3, 4) leading to better quantitative estimates on the mobility
edge. Very recently, the multiscale analysis proposed by Fröhlich and
Spencer was pushed to the limit by Klein and Germinet (24) giving exact and
rigorous criterions for the localized phase.

By contrast, the extended phase region still escape rigorous analysis if
we except the result announced by Kunz and Souillard and proved by
Klein (32) for the Anderson model on a Bethe tree. However the introduc-
tion of supersymmetric methods by Wegner and Efetov in the eighties (see
ref. 20) allowed to get some non rigorous important guesses. Eventually, it
was realized that RMT could be a good substitute to graph calculations (5)

and became the basic tool for calculation in mesoscopic systems (see, for
instance, ref. 9, 30). For indeed a numerical analysis of spectral statistics of
the Anderson model for sample sizes smaller than the localization length
exhibits a Wigner-Dyson GOE distribution. (52) A thorough discussion of
the physical origin of this phenomena has been proposed by Altshuler and
his collaborators, in view of giving a justification of the success of the
RMT for classically chaotic quantum systems. (6–8) Hence there are signs
that, at small energy scale at least and on a length scale of the order of the
coherent length 4 O(W−2), the Anderson Hamiltonian behaves like a
random GOE matrix.

It is interesting to notice that such a universal behavior also occurs in
non random aperiodic models that have no chaotic classical equivalent. It is
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the case for tight-binding approximation on a quasicrystal. (46) Actually
results from localization theory can be used to fit the experiments on
transport properties of quasicrystalline alloys. (43) This surprising result has
been given a possible explanation using the theory of transport and spectral
exponents. (13) It has been argued, using the notion of Thouless energy, that
RMT dominates in quasicrystals at low temperature whenever the large
energy scale diffusion exponent (which is anomalous in quasicrystal) is
larger than 1/d.

2. TRANSPORT: MATHEMATICAL BACKGROUND

In order to define the basic object involved in transport theory, it is
convenient to use the formalism of Noncommutative Calculus (17, 18) applied
for aperiodic solids firstly in refs. 10–12) (see ref. 14 for a recent review and
references). It should be noticed that for random operators, these notions
were proposed independently by Pastur in the early eighties. (41) Let (W, P)
be a probability space space on which Zd acts ergodically by bi-measurable
isomorphisms leaving P invariant. A covariant operator4 is a family

4 Also called questionably ergodic operator in the mathematical physics community.

A=(Aw)w ¥ W of bounded operators on H=a2(Zd) such that

1. The map w ¥ WW Aw ¥B(H) is measurable.
2. If T(a) denotes the unitary operator of translation by a then

T(a) AwT(a)−1=At
a
w if t

a is the action of a ¥ Zd on W.

The Anderson Hamiltonian H is an example of such covariant operators
whenever the distribution of the V(x)’s has a compact support. If H is
unbounded but almost surely selfadjoint, it is enough to demand that the
field of resolvent w ¥ WW (z1−Hw)−1 ¥B(H) be measurable. The set of
such operators is a Von Neumann algebra5 if endowed with the pointwise

5 A Von Neumann algebra is a Cg-algebra with a predual. (44)

algebraic operations (sum, product, adjoint) and with the norm
||A||=P− esssupw ¥ W ||Aw ||. (18) An unbounded selfadjoint covariant operator
is affiliated to this algebra.6 There is also a canonical trace given by refs. 14

6Namely all its spectral projections on bounded Borel subsets of R belong to this algebra.

and 18

TP(A)=F
W

dP(w)O0| Aw |0P= lim
L ‘ Z

d

1
|L|
TrL(Aw) (P a.e.)

This algebra is denoted L.(TP).7 Let RF=(R1,..., Rd) be the position

7 For an intrinsic definition without the help of H, see refs. 12 and 18.

operator acting on H. Then a derivation NF is defined by
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NF=(“1,..., “d) (“mA)w=ı[Rm, Aw]

on the dense subalgebra of covariant operators so that the (“mA)w’s are
bounded almost surely. The Integrated Density of States (IDS) has been
proved to satisfy the Shubin–Pastur formula (see refs. 11, 12, 41, and 48)

N(E)= lim
L ‘ Z

d

1
|L|
#{eigenvalues of Hw A L [ E}=TP(q(H [ E)) a.e. w

where q(H [ E) denotes the spectral projection of the covariant Hamilto-
nian H on the interval (−., E].

Transport properties are expressed through the current-current corre-
lation function defined as the positive matrix valued measure on R2 given by

TP(f(H) “nHg(H) “nŒH)=F
R×R

mn, nŒ(dE, dEŒ) f(E) g(EŒ)

for f, g ¥C0(R). Since the electric current operator is given by JF=e/(NFH, the
measure m is formally given by mn, nŒ(dE, dEŒ)=OE| Jn |EŒPOEŒ| JnŒ |EP dE dEŒ
(up to a multiplicative constant) in terms of the matrix elements of the current
in the eigenbasis of the Hamiltonian.

The diffusion exponents are defined so that L(t) ’ tb if L(t) is the dis-
tance a typical wave packet goes after time t. More precisely let D be a
Borel subset of R. Let then PD=q(H ¥ D) be the spectral projection of H
corresponding to D. Then the exponent b2(D) is defined by8

8 This is not the only possible definition of the diffusion exponent: see refs. 16, 26–28, 35, 47,
50) for more details.

(LD(t))2=F
+t

−t

ds
2t

F
W

dP(w)O0|Pw, D |XF w(s)−XF |2Pw, D |0P ’
t ‘. t2b2(D)

Here XF w(s)=C ı+HwXF e−ı+Hw. Moreover f(x) ’ xb means that b is the
smallest a \ 0 such that >+. f(x) dx/x1+a converges. It has been shown
that, equivalently (47)

m{(E, EŒ ¥ D×R; |E−EŒ| [ E} ’
E a 0
E2(1−b2(D))

(with a similar definition of the exponent). The theory of dissipative trans-
port then shows that, at least in the Relaxation Time Approximation
(RTA), the electric conductivity tensor is given by the Kubo formula (see
ref. 13 for instance)

sn, nŒ=
e2

(
F
R
2
mn, nŒ(dE, dEŒ)

fT, m(E)−fT, m(EŒ)
EŒ−E

1
(/ycoll−ı(EŒ−E)

,
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if T denotes the temperature, m the chemical potential, ycoll the average
collision time and kB the Boltzmann constant. In addition fT, m(E)=
(1+e(E−m)/kBT)−1 denotes the Fermi–Dirac distribution. The chemical
potential is determined by >N(dE) fT, m(E)=nel in terms of the charge
carrier density density nel. The Fermi energy EF is the limit of the chemical
potential at zero temperature for a fixed nel. Then it has been proved (see
ref. 13 for instance)

Theorem 1. If mn, nŒ=r
(2)
n, nŒ dE dEŒ with r

(2)
n, nŒ(E, EŒ) continuous and

non zero near E=EŒ=EF then, for any Borel set D … R small enough
containing EF and contained in the support of the DOS

1. b2(D)=1/2
2. The diffusion constant D(D)=limt ‘. LD(t)2/t is finite, non zero

and

D(D)=p F
D

dE C
n

r (2)
n, n(E, E)

3. The longitudinal DC conductivity at zero temperature is finite,
non zero and given by

sn, n=
pe2

(
r (2)
n, n(EF, EF)

Hence, a sufficient condition for the Anderson model to have a
metallic phase is that its current-current correlation function be continuous
in the previous sense and non zero near the Fermi energy. It ought to be
remarked that because of the cubic symmetry of the Anderson model, the
conductivity tensor is proportional to the identity matrix (isotropy).

3. RANDOM MATRIX MODELS

3.1. Freeness

In the theory of random matrices, the Voiculescu free calculus (29, 53)

describes the combinatorics of moments of a family of independent random
N×N matrices in the limit NQ.. More precisely, in this limit these
matrices define a unital algebra A together with a distribution, namely a
linear map f:AW C with f(1)=1. This algebra is highly non commuta-
tive in that, in this limit, no polynomial relation between the various
matrices exists. This is the main idea behind the notion of freeness. More-
over, f is defined by averaging products of powers of these matrices (non-
commutative moments).
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Any element X ¥A is called a random variable. The distribution of X is
the map fX: p ¥ C[X]W f(p(X)) ¥ C, where C[X] denotes the set of
polynomials in X with coefficients in C. A family X1,..., Xn of random
variable is called free whenever given any set p1,..., pl of polynomials and
any family (i1,..., il) of integers in [1, n] such that (i) ik ] ik+1 for all k’s
and (ii) f(pk(Xik ))=0, then f(p1(Xi1 ) · · · pl(Xil ))=0. It is tedious but
straightforward to check that knowing the distribution of each of the Xi’s
gives all the noncommutative moments uniquely. Hence the knowledge of
the marginal and freeness determine uniquely the distribution f. In partic-
ular, given a free pair X, Y of random variables with distribution fX and
fY respectively, the distribution of X+Y defines in a unique way a free
convolution fX+Y=fX u fY. Voiculescu then discovered the free analog of
the Fourier transform that he called the R-transform. Let GX(z) be the
Green function associated with X, namely GX(z)=f((z−X)−1) (as a
formal power series in 1/z). Then the R-transform of X is the formal
power series RX(u) defined through

GX=
1

z−RX p GX(z)

RX(u) is the free analog of the cumulant expansion. In particular

Theorem 2 (ref. 53). If X, Y are free, then

RX+Y=RX+RY

In pratical cases, the distribution of a random variable can be
extended as a positive measure on R. Among the possible distributions is
the semicircular law, given by

fX(p)=
2
p
F
1

−1
dx`1−x2 p(x)

Wigner showed that this is the Density of States (DOS) for the various
Gaussian ensembles. (38) This is actually also a consequence of the following
free central limit theorem (53)

Theorem 3 (Free Central Limit Theorem). Let (Xn)n ¥N be a
countable family of identically distributed free random variables with mean
zero and variance 1. Then the limiting distribution of Yn=n−1/2 ;n

i=1 Xi is
a semicircular law.

The proof is made elementary by using the R-transform.
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3.2. Gaussian Random Hamiltonian

In a physical situation where the electronic Hamiltonian H behaves
like a random matrix of one of the Gaussian ensembles, it is expected that
the eigenbasis of H is maximally random, namely it can be chosen by
random, uniformly with respect to the Haar measure of the orthogonal (or
unitary) group. Therefore the Hamiltonian should not determine a pre-
ferred orthogonal basis. On the other hand, the current operator
JF=ı[RF , H] is usually deterministic since the position operator commutes
with the potential. In particular its eigenbasis is well determined. Therefore
it is expected that the pair JF, H be free. If so, using the freeness relation

f(XYZY)=f(X) f(Y2) f(Z)

valid if f(Y)=0, leads to

TP(f(H) NFHg(H) NFH)=TP(f(H))TP(g(H))TP(NFH2)

so that the current-current correlation becomes

m(dE, dEŒ)=TP(NFH2)N(dE)N(dEŒ)

In particular if the DOS is given by a semicircular laws, the hypothesis
of Theorem 1 are satisfied and this model has a metallic behaviour. In
practice, however, H and NFH are not exactly free so that extra work is
needed to conclude.

3.3. The n-Orbital Model

The next example is provided by the Wegner n-orbital model. It acts
on the Hilbert space H=a2(Zd) é Cn as

Hwk(x)= C
y; |y−x|=1

k(y)+V(x) k(x) k ¥ a2(Zd) é Cn

where now w={V(x)}x ¥ Z
d is a family of n×n identically distributed inde-

pendent Gaussian random selfadjoint matrices such that

OV(x)P=0 O(V(x))2i, jP=
W2

n

As a consequence the following theorem has been proved (31, 40, 51)
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Theorem 4.

1. In the limit nQ. the V(x)’s and the free lattice Laplacean
become free variables.

2. In the limit nQ. the density of states and the current-current
correlation of the Wegner model are continuous.

3. In this limit the n-orbital model is equivalent to the Random
Phase Approximation (RPA) of the Anderson model.

Hence this model is metallic at any disorder.

3.4. The DPS Model

In a rigorous paper, Disertori et al. (19) proposed a random matrix
model acting on Z3 liable to be much closer to the 3D Anderson model
than the previous examples. Here H=(Hij) is a random gaussian matrix
with zero average and covariance

OHijHklP=dijdklJij Jij=1
1

−W̃2D+1
2
ij

where i, j vary in L 5 Z3, L a union of cubes of size W̃ and W̃ > 0 large but
fixed. Note that W̃ is roughly the inverse of the disorder parameter in this
model, so that weak disorder corresponds to large W̃’s. D is the discrete
Laplacian with periodic b.c. As usual the DOS rL=dN/dE can be
obtained through

rL(E)=
1
p
lim
E a 0

I 71 1
E+ıE−H
2
00

8

The derivative of the DOS is the imaginary part of
;x R(E+ı0+; 0, x)/p where R(E+ıE; 0, x) is defined by

71 1
E+ıE−H
2
0x

1 1
E+ıE−H
2
x0

8

Theorem 5 (ref. 19). For W̃ large enough the DOS of this model
is smooth and coincides, in [−2, 2], with the Wigner semicircular distri-
bution modulo a correction of order W̃−2. Moreover R(E+ıE; 0, x) decays
exponentially fast in x uniformly as E a 0 and as L ‘ Z3.
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4. THE FLIP MATRIX MODEL

4.1. From Anderson to Wegner

In his Ph.D. thesis, G. Poirot developed an idea coming form the field
theory analysis of the Anderson model, namely he showed that the Ander-
son Hamiltonian can be analyzed, at small disorder, through a random
matrix model called flip matrix. (42) The idea goes roughly as follows. At
very small disorder, the dominant term is the discrete Laplacean, denoted
by H0. Since only the neighborhood of the Fermi energy is relevant for the
electronic transport, it is reasonable to reduce the Hamiltonian to a small
strip near EF. Actually, since the potential has zero average, the lowest
order term in perturbation theory for the energy is O(W2) so that energies
E with |E−EF | \ O(W2) can be treated in perturbation theory. For this
reason, let qW be the spectral projection of H0 on the energies E such that
|E−EF | [ c ·W2 for some c large enough but independent ofW. Since H0 is
translation invariant, its spectral analysis can be performed through
Fourier’s transform in the quasimomentum space, namely H0 is the mul-
tiplication by a band function E(k) which is periodic in k ¥ Rd with period
group given by the reciprocal lattice (here 2pZd). The Fermi surface is then
given by the set of k’s for which E(k)=EF. Near the band edges of the
spectrum of H0, the Fermi surface is a sphere, whereas for energies near the
band center it can be more involved. In particular the spectrum of H0 is
highly degenerated. Consequently, at small disorder, a degenerate pertur-
bation theory must be apply. The lowest order contribution is therefore
given by the operator Heff=qWHqW 4 EF1+qWVqW.

If qW is actually replaced by a smooth cut-off function of H0 localized
within O(W2) from the Fermi surface, its matrix element decay in the space
over a distance of order O(W−2). Therefore beyond this distance the eigen-
states of Heff are likely to be stochastically independent. For this reason let
Zd be divided into cubes of size O(W−2). Given such a cube L, let VL be the
restriction of Heff to L. Since the contribution of H0 to Heff is essentially a
scalar, VL is a random matrix of size n=O(W−2(d−1)). Then the Anderson
Hamiltonian can be seen as a tight binding model indexed by the L’s with a
potential VL and coupled by a translation invariant nearest neighbor
operator. In other words, this transformation gives the Anderson model the
structure of an n-orbital model. However the potential does not belong to a
classical Gaussian ensemble!

This can be seen as follows (see Fig. 2): the reduction to a cube, with
finite volume, is equivalent to discretize the momentum space with typical
spacing O(W2). Therefore the discretized Fermi strip SF defined by qW
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Fig. 2. Fermi surface for the flip model.

contains only n points. Then VL can be seen as an n×n selfadjoint matrix
indexed by SF and given by

Ok| VL |kŒP=Ṽ(kŒ−k)

where Ṽ represents the Fourier transform of the sequence w=(V(x))x ¥ Z
d.

It is not difficult to check that, if the potential is Gaussian, the Ṽ(kŒ−k)’s
are independent Gaussian Variables with zero mean and variance approx-
imately equal to W. Moreover should these matrix elements be indepen-
dent, the model would fall in the Gaussian orthogonal ensemble, because
the Hamiltonian is time reversal symmetric. However matrix elements are
equal for equal values of the vector kŒ−k (momentum conservation). Even
if k and kŒ are submitted to stay on the Fermi surface, there are several

kx

ky

kz

pairs

Twisted

Fig. 3. Twisted pairs of momenta for d=3.
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pairs (k, kŒ) ¥ S ×2
F with a given value of k−kŒ. In dimension d=2 there are

only two such pairs at most (see Fig. 2). But for d \ 3 (see Fig. 3) the set of
such pairs increases with n like n (d−2)/(d−1), so that VL cannot be in any of
the known Gaussian ensembles.

4.2. Description of the Flip Model for d=2

Taking advantage of the time reversal symmetry, one can label the
points of SF by indices a, b ¥ {1,..., N} 2 {−N,..., −1} with n=2N.
Namely k−a=−ka (see Fig. 2). Then VL becomes a selfadjoint random
matrix. Together with ther momentum conservation this leads to the
following constraints

Va, b=Vb, a Va, b=V−b, −a Va, a=V0

Apart from these constraints, the matrix elements are independent
gaussian random variables such that

OVa, bP=0 O|Va, b |2P=W2=O(1/2N)

The main result obtained in ref. 15 is the following

Theorem 6 (ref. 15). The DOS of the flip matrix model is semi-
circular.

The proof of this result has been obtained through supersymmetric
methods. (20, 39) Namely the DOS can be written as supersymmetric integral

dN
dE

= lim
IE a 0

1
p
F S+

+aS+ae
L DY† DY

where Y±a=(S±a, q±a) is a superfield with bosonic part S±a and fermionic
part q±a. Moreover, L is a sum of quartic terms of the form
Y†

±aY±bY
†
±bY±a. Using the commutation rules, L can be written as a sum

of terms of the form Y†
±aY±aY

†
±bY±b, allowing for a separation between

the a’s and the b’s. The sum over a of the terms in Y†
±aY±a defines a mean

field so that L is a sum of squares of this mean field. Using a Gaussian
integral again (Hubbard–Stratonovich transformation), the quartic terms
can be undone leading to

eL=F D Re ıW;a Y
†
aRYa
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where R varies in a set of 4×4 supermatrices. Then the Gaussian integral
can be performed. After integrating out the Fermion degrees of freedom,
the DOS is given in terms of a 5-dimensional ordinary integral of the form
>R5 d5x(F(x))N. Since N=O(W−2)± 1, it can be analyzed through a
saddle point method. The function F has 4 saddle points, among which
only one contributes to the limit W a 0. This latter one gives the semicir-
cular law. L

4.3. Beyond the Flip Matrix Model

For d \ 3 the degeneracy of the matrix elements in the flip model
makes the flip model much more difficult to analyze even with the super-
symmetric method. However a power counting of the Feynmann graphs
associated with non coplanar pairs (k1, k

−

1) and (k2, k
−

2) with k
−

1−k1=
k −2−k2 (see Fig. 3) shows that their contribution should be subdominant. If
so, only the planar diagram should contribute so that the flip matrix model
should again be the dominant contribution. This gives a hope that the
previous result also holds in any dimension.

Beside the calculation of the DOS, it will be necessary to compute the
current-current correlation function and to show that it is smooth enough so
as to apply the Theorem 1. Such calculation can be done through super-
symmetry.(39) However, the supersymmetric field has more degrees of free-
dom (39) and the zero mode set becomes much more complicated. Recently
Fyodorov(23) has proposed a substitute to the Hubbard–Stratonovich trans-
formation that avoid such a difficult problem.

In any case the previous calculation should be supplemented by an
estimate of error terms coming from approximating the Anderson model
by the flip one, in a way similar to the analysis of refs. 19, 36, 37, and 42.

The supermatrix R found in the previous section can be seen as an
effective order parameter for each cube L. The small coupling between
cubes should then give rise to nearest neighbor coupling between such
parameter, leading to a kind of Ising model with spin given by R or a non-
linear s-model. (20) Therefore spin waves are expected at low energy. A long
range order will follow if the spin waves are massless: this is the famous
Goldstone mode that is predicted by theoretical approaches. It is worth
remarking however, that the R matrix was obtained through the calcula-
tion of the DOS only. If the current-current correlation function is con-
sidered instead, the effective order parameter should be of a different
nature. But the existence of a Goldstone mode must also be addressed. In
d=2, it is expected that the spin wave be massive with a mass e−O(W−1).
This a highly non perturbative result based upon a finite scale renormali-
zation group analysis. (2) To prove that they are massless for d \ 3, one
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possible method could be the proof of an infrared inequality through
Osterwalder–Schrader positivity. (21) 9

9However, O–S positivity may not hold (the author thanks T. Spencer for this remark).

These comments show that there is still a long way to go before a rig-
orous proof of the existence of a metallic phase in the Anderson model can
be established.
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